Assignment 2

1. Prove that the sequence $\left(a_{n}\right)$ defined recursively by $a_{1}=1$ and $a_{n+1}=$ $a_{n}+\frac{1}{a_{n}}, n \geqslant 1$ is not bounded.
2. Prove that the sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}, n=1,2, \cdots$ is convergent in \mathbb{R}.
3. Show that a real sequence $\left(a_{n}\right)$ is not bounded if and only if there is a subsequence $\left(a_{n_{k}}\right)$ such that $\left|a_{n_{k}}\right| \geqslant k$ for all k.
4. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R} which is bounded but not convergent. Show that there exist two subsequences converging to two different limits.
5. Prove that the following two conditions on sequence $\left(a_{n}\right)$ in \mathbb{R} are equivalent. (a) $\left(a_{n}\right)$ is bounded
(b) every subsequence of $\left(a_{n}\right)$ has a convergent subsequence.
6. If $\left(a_{n}\right)$ is a monotone sequence in \mathbb{R} that has a bounded subsequence, show that $\left(a_{n}\right)$ is convergent.
